Learning invariant features using the Transformed Indian Buffet Process

نویسندگان

  • Joseph L. Austerweil
  • Thomas L. Griffiths
چکیده

Identifying the features of objects becomes a challenge when those features can change in their appearance. We introduce the Transformed Indian Buffet Process (tIBP), and use it to define a nonparametric Bayesian model that infers features that can transform across instantiations. We show that this model can identify features that are location invariant by modeling a previous experiment on human feature learning. However, allowing features to transform adds new kinds of ambiguity: Are two parts of an object the same feature with different transformations or two unique features? What transformations can features undergo? We present two new experiments in which we explore how people resolve these questions, showing that the tIBP model demonstrates a similar sensitivity to context to that shown by human learners when determining the invariant aspects of features.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Images using Transformed Indian Buffet Processes

Latent feature models are attractive for image modeling, since images generally contain multiple objects. However, many latent feature models ignore that objects can appear at different locations or require pre-segmentation of images. While the transformed Indian buffet process (tIBP) provides a method for modeling transformation-invariant features in unsegmented binary images, its current form...

متن کامل

The Indian Buffet Process: An Introduction and Review

The Indian buffet process is a stochastic process defining a probability distribution over equivalence classes of sparse binary matrices with a finite number of rows and an unbounded number of columns. This distribution is suitable for use as a prior in probabilistic models that represent objects using a potentially infinite array of features, or that involve bipartite graphs in which the size ...

متن کامل

Learning the Structure of Probabilistic Graphical Models with an Extended Cascading Indian Buffet Process

This paper presents an extension of the cascading Indian buffet process (CIBP) intended to learning arbitrary directed acyclic graph structures as opposed to the CIBP, which is limited to purely layered structures. The extended cascading Indian buffet process (eCIBP) essentially consists in adding an extra sampling step to the CIBP to generate connections between non-consecutive layers. In the ...

متن کامل

Restricted Indian buffet processes

Latent feature models are a powerful tool for modeling data with globally-shared features. Nonparametric exchangeable models such as the Indian Buffet Process offer modeling flexibility by letting the number of latent features be unbounded. However, current models impose implicit distributions over the number of latent features per data point, and these implicit distributions may not match our ...

متن کامل

A Probabilistic Framework for Multimodal Retrieval using Integrative Indian Buffet Process

We propose a multimodal retrieval procedure based on latent feature models. The procedure consists of a Bayesian nonparametric framework for learning underlying semantically meaningful abstract features in a multimodal dataset, a probabilistic retrieval model that allows cross-modal queries and an extension model for relevance feedback. Experiments on two multimodal datasets, PASCAL-Sentence an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010